DCS Reference/Missile Ranges: Difference between revisions
Jump to navigation
Jump to search
mNo edit summary |
mNo edit summary |
||
Line 1: | Line 1: | ||
All numbers in these tables are based on vague estimates and/or PR posturing and will not be even remotely accurate. For a sane estimate of actual effective ranges, divide all numbers by 2 or 3. In addition, all numbers will be reduced further when dealing with a manoeuvring and/or cold-aspect target, especially at lower altitudes (i.e. anything below 25,000'). | All numbers in these tables are based on vague intelligence estimates and/or PR posturing and will not be even remotely accurate. For a more sane and realistic estimate of actual effective ranges, divide all numbers by 2 or 3. In addition, all numbers will be reduced further when dealing with a manoeuvring and/or cold-aspect target, especially at lower altitudes (i.e. anything below 25,000'). | ||
At best, some of the wire- or laser-guided air-to-ground missiles have proper ranges since they are limited by the wire length and laser coherence, which are fairly well-known entities, more than by aerodynamics and propulsion capacity. Even then, however, guiding the missile on an odd path will reduce the effective range accordingly. | |||
== Air-to-Air Missiles == | == Air-to-Air Missiles == |
Revision as of 13:56, 16 March 2019
All numbers in these tables are based on vague intelligence estimates and/or PR posturing and will not be even remotely accurate. For a more sane and realistic estimate of actual effective ranges, divide all numbers by 2 or 3. In addition, all numbers will be reduced further when dealing with a manoeuvring and/or cold-aspect target, especially at lower altitudes (i.e. anything below 25,000').
At best, some of the wire- or laser-guided air-to-ground missiles have proper ranges since they are limited by the wire length and laser coherence, which are fairly well-known entities, more than by aerodynamics and propulsion capacity. Even then, however, guiding the missile on an odd path will reduce the effective range accordingly.
Air-to-Air Missiles
Name | Models and ranges | Note | |||||||
---|---|---|---|---|---|---|---|---|---|
AIM-7 “Sparrow” | E | F | M | MH | MH variant offers improved loft logic that allows for more efficient use of the flight energy and longer effective range. | ||||
24nm | 37nm | ||||||||
45km | 70km | ||||||||
AIM-9 “Sidewinder” | B | J | L | M | P | P5 | X | X variant offers over-the-shoulder launching that significantly reduces effective range. | |
2.5nm | 10nm | 20nm | |||||||
4.5km | 18km | 37km | |||||||
AIM-54 “Phoenix” | A Mk47 | A Mk60 | C Mk47 | C | The Mk60 engine offers higher acceleration and speed, and thus lower time on target, but also lower manoeuvrability. | ||||
100nm+ | |||||||||
180km+ | |||||||||
AIM-120 AMRAAM | B | C | C variant has clipped wings for internal carry on the F-22, resulting in slightly lowered manoeuvrability. | ||||||
40nm | 57nm | ||||||||
75km | 105km | ||||||||
MICA | IR | RF | Offers over-the-shoulder launching that significantly reduces effective range. | ||||||
43nm | |||||||||
80km | |||||||||
Mistral | 3.5nm | ||||||||
6km | |||||||||
R-3 / R-13 | M | M1 | R | S | All variants are based on the same K-13 platform reverse-engineered from the GAR-8 (AIM-9B). | ||||
8nm | 4.5nm | 4nm | |||||||
15km | 8km | 7km | |||||||
R-24 | R | T | |||||||
27nm | 8mn | ||||||||
50km | 15km | ||||||||
R-27 | ER | ET | R | T | Guidance logic allows for a maximum vertical separation of ±10km (32k ft) for the R/T variants and ±12km (39k ft) for the ER/ET. | ||||
35nm | 28nm | 23nm | 18nm | ||||||
65km | 52km | 42km | 33km | ||||||
R-33 | 110nm+ | ||||||||
200km+ | |||||||||
R-40 | R | T | |||||||
43nm | 10nm | ||||||||
80km | 20km | ||||||||
R-55 / RS-2US | 3.5nm | All variants are based on the same K-5 platform, only with different seeker heads. | |||||||
6km | |||||||||
R-60 | base model | M | The M variant has an 20° wider seeker FoV and significantly lower minimum range. | ||||||
4.5nm | |||||||||
8km | |||||||||
R-73 | 16nm | Offers over-the-shoulder launching that significantly reduces effective range. | |||||||
30km | |||||||||
R-77 | 54nm | ||||||||
100km | |||||||||
R.550 Magic 2 (Matra Magic II) |
8nm | ||||||||
15km | |||||||||
Super 530D | 20nm | ||||||||
37km |